• Condensateurs haute fréquence basse impédance
  • Condensateurs haute fréquence basse impédance

Condensateurs haute fréquence basse impédance

  • Séries: CD288H
  • Tension de travail Gamme: 6.3V~450VDC
  • Gamme de capacité: 0.47uF~15000uF
  • Température de fonctionnement: -55~+105°C
  • Charger la vie: 8000 hours at +105℃
  • Application: Используется в кругах с высокой частотой и низким сопротивлением.Utilisé dans les cercles haute fréquence et basse impédance.

  

Manuel Télécharger Produit (fichier PDF) Envoyer un e-mail à nous!

■ Introduction du produit

Condensateurs électrolytiques en aluminium à fils radiaux CD288H Condensateurs à basse impédance haute fréquence

Fonctionnalité:
● 105 ° C, 8000 heures.
● Conforme RoHS.

Application:
● Excellente fréquence utilisée en haute fréquence et basse impédance.


spécification
UR(V)
CR(μF)
6.3V(0J) 10V(1A)
øDxL(mm) Z(Ω) I~(mA) 105°C 100KHz øDxL(mm) Z(Ω) I~(mA) 105°C 100KHz
20°C/100KHz -10°C/100KHz 20°C/100KHz -10°C/100KHz
22uF ø5x11 0.6 1.2 180 ø5x11 0.6 1.2 180
33uF ø5x11 0.6 1.2 180 ø5x11 0.6 1.2 180
47uF ø5x11 0.6 1.2 180 ø5x11 0.6 1.2 180
82uF - - - - ø5x11 0.65 1.3 175
100uF ø5x11 0.65 1.3 175 ø5x11 0.6 1.2 180
150uF ø6.3x11 0.25 0.5 280 ø6.3x11 0.25 0.5 290
180uF - - - - ø6.3x11 0.25 0.5 290
220uF ø6.3x11 0.25 0.5 290 ø6.3x11 0.25 0.5 290
330uF ø8x11.5 0.25 0.5 290 ø8x11.5 0.17 0.34 488
470uF ø8x11.5 0.17 0.34 488 ø8x11.5 0.117 0.234 555
560uF ø8x11.5 0.117 0.234 555 - - - -
680uF ø10x12.5 0.12 0.24 613 ø10x12.5 0.09 0.18 755
820uF ø8x16 0.085 0.17 730 - - - -
1000uF ø10x12.5 0.09 0.18 755 ø10x16 0.068 0.136 1050
1200uF ø8x20 0.065 0.13 995 ø10x20 0.052 0.104 1220
1500uF ø10x20 0.052 0.104 1220 ø10x20 0.052 0.104 1220
2200uF ø12.5x20 0.045 0.09 1400 ø12.5x20 0.038 0.076 1655
2700uF ø10x25 0.035 0.07 1815 ø12.5x25 0.03 0.06 1945
3300uF ø12.5x20 0.038 0.076 1655 ø12.5x25 0.03 0.06 1945
3900uF ø12.5x25 0.03 0.06 1945 ø14x31.5 0.022 0.044 2510
4700uF ø16x25 0.028 0.056 2220 ø16x25 0.022 0.044 2120
5600uF ø14x31.5 0.022 0.044 2510 ø16x25 0.022 0.044 2555
6800uF ø16x25 0.022 0.044 2555 ø16x31.5 0.018 0.036 3010
8200uF ø16x31.5 0.018 0.036 3010 ø16x35.5 0.016 0.032 3150
10000uF ø16x31.5 0.02 0.04 3150 ø18x35.5 0.015 0.03 3680
12000uF ø18x31.5 0.016 0.032 3635 - - - -
15000uF ø18x35.5 0.015 0.03 3680 ø18x40 0.014 0.028 3800
/
UR(V)
CR(μF)
16V(1C) 25V(1E)
øDxL(mm) Z(Ω) I~(mA) 105°C 100KHz øDxL(mm) Z(Ω) I~(mA) 105°C 100KHz
20°C/100KHz -10°C/100KHz 20°C/100KHz -10°C/100KHz
4.7uF - - - - ø5x11 0.6 1.2 180
10uF ø5x11 0.6 1.2 180 ø5x11 0.6 1.2 180
22uF ø5x11 0.6 1.2 180 ø5x11 0.6 1.2 180
33uF ø5x11 0.6 1.2 180 ø5x11 0.6 1.2 180
39uF - - - - ø5x11 0.6 1.2 175
47uF ø5x11 0.6 1.2 180 ø5x11 0.6 1.2 180
56uF ø5x11 0.65 1.3 175 - - - -
82uF - - - - ø6.3x11 0.35 0.7 290
100uF ø6.3x11 0.25 0.5 290 ø6.3x11 0.25 0.5 290
120uF ø6.3x11 0.25 0.5 290 ø8x11.5 0.25 0.5 400
150uF ø6.3x11 0.25 0.5 290 ø8x11.5 0.117 0.234 555
180uF ø8x11.5 0.23 0.46 400 - - - -
220uF ø8x11.5 0.117 0.234 555 ø8x11.5 0.117 0.234 555
330uF ø8x11.5 0.117 0.234 555 ø10x12.5 0.09 0.18 755
470uF ø10x12.5 0.09 0.18 755 ø10x16 0.068 0.136 1050
560uF - - - - ø10x20 0.052 0.104 1220
680uF ø10x16 0.068 0.136 1050 ø10x20 0.052 0.104 1220
820uF ø10x20 0.052 0.104 1220 ø10x25 0.045 0.09 1440
1000uF ø10x20 0.052 0.104 1220 ø12.5x20 0.038 0.076 1655
1200uF ø10x25 0.045 0.09 1440 - - - -
1500uF ø12.5x20 0.038 0.076 1655 ø16x25 0.022 0.044 1950
1800uF - - - - ø14x31.5 0.025 0.05 2310
2200uF ø12.5x25 0.03 0.06 1945 ø16x25 0.026 0.052 2390
2700uF ø14x25 0.025 0.05 2310 ø16x25 0.022 0.044 2555
3300uF ø16x25 0.026 0.052 2390 ø16x31.5 0.018 0.036 3010
3900uF ø16x25 0.022 0.044 2555 ø16x35.5 0.016 0.032 3150
4700uF ø16x31.5 0.018 0.036 3010 ø18x35.5 0.015 0.03 3680
5600uF ø16x35.5 0.016 0.032 3150 - - - -
6800uF ø18x35.5 0.015 0.03 3680 ø18x40 0.014 0.028 3800
8200uF ø18x35.5 0.015 0.03 3680 - - - -
10000uF ø18x40 0.014 0.028 3800 - - - -
/
UR(V)
CR(μF)
35V(1V) 50V(1H)
øDxL(mm) Z(Ω) I~(mA) 105°C 100KHz øDxL(mm) Z(Ω) I~(mA) 105°C 100KHz
20°C/100KHz -10°C/100KHz 20°C/100KHz -10°C/100KHz
0.47uF - - - - ø5x11 5 10 25
1uF - - - - ø5x11 3.5 7 40
2.2uF - - - - ø5x11 3 6 55
3.3uF - - - - ø5x11 2.6 5.2 65
4.7uF ø5x11 0.6 1.2 180 ø5x11 2.3 4.6 90
10uF ø5x11 0.6 1.2 180 ø5x11 1.4 2.8 120
18uF - - - - ø5x11 1.3 2.6 120
22uF ø5x11 0.6 1.2 180 ø5x11 1.2 2.4 170
27uF ø5x11 0.65 1.3 175 - - - -
33uF ø5x11 0.6 1.2 180 ø6.3x11 0.43 0.86 300
47uF ø6.3x11 0.25 0.5 290 ø6.3x11 0.43 0.86 300
56uF ø6.3x11 0.25 0.5 290 ø8x11.5 0.4 0.8 360
82uF ø8x11.5 0.2 0.4 400 ø8x11.5 0.234 0.468 485
100uF ø8x11.5 0.117 0.234 555 ø8x11.5 0.234 0.468 485
120uF - - - - ø8x16 0.155 0.31 635
150uF ø8x11.5 0.117 0.234 555 ø10x12.5 0.162 0.324 615
180uF - - - - ø8x20 0.12 0.24 860
220uF ø10x12.5 0.09 0.18 755 ø10x16 0.119 0.238 850
270uF - - - - ø10x25 0.082 0.164 1200
330uF ø10x16 0.068 0.136 1050 ø10x20 0.09 0.18 1010
390uF ø10x20 0.052 0.104 1220 ø12.5x20 0.063 0.126 1480
470uF ø10x20 0.052 0.104 1220 ø12.5x20 0.06 0.12 1500
560uF ø10x25 0.045 0.09 1440 ø12.5x25 0.05 0.1 1832
680uF ø12.5x20 0.038 0.076 1655 ø12.5x25 0.05 0.1 1470
820uF - - - - ø14x31.5 0.034 0.068 2285
1000uF ø12.5x25 0.03 0.06 1945 ø16x25 0.034 0.068 2235
1200uF ø14x25 0.025 0.05 2310 ø16x31.5 0.028 0.056 2700
1500uF ø16x25 0.026 0.052 2390 ø16x31.5 0.026 0.052 1970
1800uF ø16x25 0.022 0.044 2555 ø18x31.5 0.025 0.05 3000
2200uF ø16x31.5 0.018 0.036 3010 ø18x35.5 0.023 0.046 3100
2700uF ø16x35.5 0.016 0.032 3150 - - - -
3300uF ø18x35.5 0.015 0.03 3680 - - - -
4700uF ø18x40 0.014 0.028 3800 - - - -
/
UR(V)
CR(μF)
63V(1J) 100V(2A)
øDxL(mm) Z(Ω) I~(mA) 105°C 100KHz øDxL(mm) Z(Ω) I~(mA) 105°C 100KHz
20°C/100KHz -10°C/100KHz 20°C/100KHz -10°C/100KHz
0.47uF - - - - ø5x11 43 86 20
1uF - - - - ø5x11 20 40 30
2.2uF - - - - ø5x11 9.8 19.6 44
3.3uF - - - - ø5x11 6.6 13.2 58
4.7uF ø5x11 4.7 5.4 68 ø5x11 4.6 9.2 74
6.8uF ø5x11 2.5 5 95 ø5x11 3.5 7 95
10uF ø5x11 2.1 4.1 110 ø6.3x11 1.8 3.6 130
12uF ø5x11 2 4 145 - - - -
15uF ø6.3x11 1.2 2.4 160 ø8x11.5 0.83 1.66 180
18uF - - - - ø8x11.5 0.8 1.6 200
22uF ø6.3x11 0.71 1.42 250 ø8x11.5 0.68 1.36 230
33uF ø6.3x11 0.71 1.42 250 ø10x12.5 0.46 0.92 320
39uF ø8x11.5 0.7 1.4 330 - - - -
47uF ø8x11.5 0.342 0.684 360 ø10x16 0.37 0.74 420
68uF ø8x11.5 0.342 0.684 405 ø10x20 0.3 0.6 490
82uF - - - - ø10x25 0.25 0.5 540
100uF ø10x12.5 0.256 0.512 535 ø12.5x20 0.18 0.36 580
120uF ø10x16 0.194 0.388 600 - - - -
150uF ø10x16 0.194 0.388 660 ø12.5x25 0.13 0.26 710
180uF ø10x20 0.147 0.294 885 ø14x31.5 0.12 0.24 790
220uF ø10x20 0.2 0.4 700 ø16x25 0.1 0.2 890
270uF ø12.5x20 0.09 0.18 1410 - - - -
330uF ø12.5x20 0.085 0.17 1285 ø16x25 0.09 0.18 1080
390uF ø12.5x25 0.07 0.14 1720 ø18x25 0.083 0.166 1260
470uF ø12.5x25 0.07 0.14 1470 ø16x31.5 0.076 0.152 1310
560uF - - - - ø18x31.5 0.068 0.136 1370
680uF ø16x25 0.05 0.1 2160 ø18x35.5 0.064 0.128 1410
820uF ø16x31.5 0.043 0.086 2670 - - - -
1000uF ø16x31.5 0.043 0.086 2340 ø18x40 0.047 0.094 1520
1200uF ø18x31.5 0.032 0.064 2950 - - - -
1500uF ø18x35.5 0.03 0.06 3095 - - - -
2200uF ø18x40 0.028 0.056 3200 - - - -
/
UR(V)
CR(μF)
160V(2C) 200V(2D) 250V(2E) 315V(2F)
øDxL(mm) *I~(mA) øDxL(mm) *I~(mA) øDxL(mm) *I~(mA) øDxL(mm) *I~(mA)
0.47uF ø6.3x11 12 ø6.3x11 12 ø6.3x11 12 ø8x11.5 11
1uF ø6.3x11 17 ø6.3x11 17 ø6.3x11 17 ø8x11.5 16
2.2uF ø6.3x11 25 ø6.3x11 25 ø8x11.5 29 ø10x12.5 28
3.3uF ø8x11.5 36 ø8x11.5 36 ø10x12.5 42 ø10x12.5 34
4.7uF ø8x11.5 43 ø10x12.5 50 ø10x12.5 50 ø10x16 45
10uF ø10x12.5 70 ø10x16 80 ø10x20 88 ø10x20 72
22uF ø10x20 130 ø10x20 140 ø12.5x25 155 ø12.5x25 120
33uF ø12.5x20 180 ø12.5x25 190 ø12.5x25 190 ø16x25 155
47uF ø12.5x25 220 ø12.5x25 220 ø16x25 230 ø16x35.5 190
100uF ø16x25 330 ø16x31.5 335 ø18x35.5 340 ø18x40 285
220uF ø18x35.5 500 ø18x40 515 ø20x40 525 ø22x50 540
330uF ø20x40 900 ø22x40 1100 ø22x50 1150 - -
470uF ø22x50 1200 ø22x50 1310 ø26x50 1350 - -
 
UR(V)
CR(μF)
350V(2V) 400V(2G) 450V(2W)
øDxL(mm) *I~(mA) øDxL(mm) *I~(mA) øDxL(mm) *I~(mA)
0.47uF ø8x11.5 11 - - - -
1uF ø10x12.5 17 ø10x12.5 16 ø10x12.5 18
2.2uF ø10x16 31 ø10x16 27 ø10x20 29
3.3uF ø10x16 38 ø10x20 36 ø12.5x20 41
4.7uF ø10x20 49 ø10x20 43 ø12.5x20 49
10uF ø12.5x20 82 ø12.5x20 72 ø16x25 75
22uF ø16x25 130 ø16x25 110 ø16x31.5 115
33uF ø16x31.5 160 ø16x31.5 140 ø18x35.5 145
47uF ø18x35.5 200 ø18x35.5 170 ø20x40 175
100uF ø20x40 290 ø22x50 350 ø26x50 350
220uF ø26x50 550 - - - -

Fiche technique (PDF) des condensateurs électrolytiques en aluminium à plomb radial CD288H, veuillez nous contacter..

Comment commander
Envoyez-nous les spécifications dont vous avez besoin.



ESR dans les condensateurs électrolytiques en aluminium Pour les applications moyenne et haute tension, des condensateurs électrolytiques en aluminium à faibles pertes sont nécessaires. Les condensateurs à faible ESR ont moins de pertes de puissance et de problèmes de chauffage interne par rapport aux condensateurs à ESR élevés. Outre la diminution des performances, des valeurs ESR élevées réduisent la durée de vie d'un condensateur électrolytique en aluminium. De plus, une faible valeur ESR permet d'obtenir une plus grande capacité de courant d'ondulation. Dans un condensateur électrolytique en aluminium, l'anode en aluminium, les feuilles de cathode, l'électrolyte et les languettes contribuent à l'ESR globale du condensateur. La valeur de la résistance de chaque source dépend principalement de la fréquence et de la température. Aux basses fréquences et aux basses températures, l'oxyde d'aluminium apporte la plus grande contribution à l'ESR globale. D'autre part, à des fréquences élevées et des températures élevées, la plus grande contribution à l'ESR globale provient de l'électrolyte. Généralement, dans les conditions d'application, les combinaisons de papier et l'électrolyte sont les principales sources de résistance série équivalente dans ces condensateurs. Des électrodes polymères et hybrides (combinant polymère et électrolyte humide) avec une ESR significativement plus faible et plus stable sont également disponibles sur le marché, qui traitent la plupart des inconvénients des condensateurs électrolytiques humides réduisant les pertes ohmiques, effet de dessèchement (amélioration de la fiabilité et de la stabilité ) et la dépendance de la température ESR. La valeur ESR d'un condensateur électrolytique en aluminium dépend de l'épaisseur et de la densité des séparateurs en papier. Pour minimiser la résistance en série équivalente, des séparateurs plus épais et plus denses ne sont pas recommandés.L'utilisation de nombreuses languettes et d'un matériau d'électrolyte à haute conductivité permet de réduire l'ESR dans les condensateurs électrolytiques en aluminium. Les connexions de languette, les feuilles et les séparateurs de papier peuvent être personnalisés pour produire une contribution de résistance spécifique à la résistance série équivalente globale. Comparaison des technologies ESR avec condensateur de fréquence Condensateurs-ESR-vs-fréquence Condensateurs-ESR-vs-fréquence Fig.3 Comparaison de différentes technologies de condensateurs 220uF 6.3V ESR avec fréquence ESR est utilisé pour caractériser les pertes de condensateurs principalement dans le domaine de fréquence plus élevée avec une fréquence de référence standard à 100 kHz. L'ESR avec diagramme de fréquence illustre les pertes dans tout le spectre de fréquences. Comme discuté ci-dessus, les pertes à basse fréquence inférieures à environ 1 kHz sont entraînées par une polarisation «plus lente» et les pertes dans les couches diélectriques, les fréquences moyennes (~ 1 kHz à 10 kHz) sont entraînées par des pertes de construction internes (telles que la conductivité de la structure interne et de l'électrolyte), le les hautes fréquences> 100 kHz sont entraînées principalement par des pertes ohmiques de terminaisons, de contacts, etc. En se référant à la figure 3. Les condensateurs MLCC présentent des valeurs ESR les plus basses par rapport aux autres technologies référencées à une fréquence de spécification standard de 100 kHz grâce à sa structure multicouche. Ceci est bénéfique pour le lissage des fréquences plus élevées et des pics rapides pour des applications telles que les alimentations à découpage. Cependant, aux basses fréquences, les condensateurs MLCC de classe II présentent une ESR (et DF) plus élevée que d'autres technologies. Ainsi, dans un exemple pratique en cas de pic de basse fréquence présent (tel que 50-216Hz souvent vu), il est plus efficace d'utiliser les MLCC en parallèle avec certains condensateurs électrolytiques en aluminium ou au tantale.

Cliquez pour rechercher des produits

retour d'information

E-mail
contact
tel
Nom de la compagnie
adresse

сontent